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Abstract-The postbuckling behaviour of anisotropic panels with initial imperfections is inves­
tigated. Nonlinear analysis is developed for symmetric panels under combined biaxial compression
and shear loads in order to obtain the out-of-plane panel deflection in the postbuckling range. The
nonlinear differential equations are obtained by using the principle of the stationary value of the
total potential energy and are expressed in terms of the out-of-plane displacement and the Airy
function. They are solved with the Galerkin method for various boundaryconditions. The theoretical
results are in good agreement with the few results concerning isotropic plates and the simply
supported anisotropic results found in literature. A new and original test facility was built in order
to apply simultaneously both biaxial compression and shear loads. An anisotropic panel, clamped
along the four edges, has been tested under different combined loads; the correlation between the
experimental and analytical results has been quite good. The results demonstrate the influence of
initial imperfections on panel deflection in the postbuckling range: the curves obtained exper­
imentally in the presence of imperfections cross those obtained theoretically, where imperfections
are ignored (producing lower out-of-plane deflection).

1. INTRODUCTION

While metallic panels are usually designed to work in the postbuckling field, panels made
of composite materials are not permitted to exceed the buckling load. However, several
analytical (Stein, 1985) and experimental results (Starnes and Rouse, 1981; Starnes et al.,
1984; Rouse, 1985) have shown a noticeable postbuckling behaviour of the composite
panels before failure occurs, depending on the width-to-thickness ratio. An analytical
solution is presented in this paper to investigate the postbuckling behaviour of simply
supported and/or fully clamped anisotropic plates under combined biaxial compression
and shear load. Since panels are often not perfectly manufactured, initial imperfections are
also included in the analysis; such imperfections, in fact, considerably influence the out-of­
plane displacement behaviour of the panel and cannot be ignored. No analytical and
experimental results were found in open literature on such loading and boundary conditions.
On the basis of these considerations, a new test facility was built at the Polytechnic ofTurin
in order to apply simultaneously both biaxial compression and shear loads (Romeo and
Frulla, 1992).

2. THEORETICAL ANALYSIS

The classical laminate theory has to be modified for the postbuckling analysis of
anisotropic plates under combined biaxial compression and shear loads. In fact, the strain­
displacement relations become nonlinear when the components due to the out-of-plane
deflection are taken into account. Plates with the initial imperfections Wo have been studied
on the basis of the Marguerre approximate nonlinear theory (Chia, 1980). The resultant
strain-displacement relations are:
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ex = u,x+!w,~+wo.xw,x-zw,xx

ey = V,y+!w,;+WO,yW,y-ZW,yy

exy = U,y+V,x+ w,XW,Y+WO,yW,x+ wo,xW,y-2zw,xy. (1)

Where u, v, ware the displacement components of the middle surface and ex, ey, exy are the
panel strain components. An index separated by a comma represents a derivative. By
using the principle of the stationary value of the total potential energy, the equilibrium
equations are worked out:

Nx,x +Nxy,y = 0

Ny,y +Nxy,x = 0

Mx,xx+My,yy+2Mxy,xy+Nxw,xx+Nyw,yy+2Nxyw,xy+Nxwo,xx+Nywo,yy+2Nxywo,xy = 0,
(2)

in which Nx, Ny, N xy , M x, My, M xy represent forces and moment per unit length, respectively.
By introducing the Airy function t/J(x, y) as:

(3)

the first two equilibrium equations are identically satisfied and the third equation becomes:

The compatibility equation is introduced, in conjunction with eqn (4), for panels with initial
imperfections as :

o 0 0 z 2ex,yy +ey,xx -exy,xy = W,xy - W,xxW,yy + wO,xyW,xy - WO,yyW,xx - WO,xxw,yY' (5)

where e~, e~, e~y are the strain components of the middle surface. The stress-strain relations
in terms of the t/J function and the out-of-plane displacement for symmetric panel, are:

(6)

(7)

in which [A] and [D] are the extensional and the bending stiffness matrices, respectively,
By substituting the stress-strain relations in eqns (4) and (5) and normalizing as (Zhang
and Mathews, 1984, 1985) :

[A*] = [A-I] [A*] = Azz(A*]

~ = xla '1 = ylb ,= zlh A. = alb F = t/JIAzzhz T = Wo= wolh

Ih *] ] [ -*] 1_ [ *W= W [D = [D D - D]- hZA
22

'

the following governing system is obtained:

(8)

- - - - Z -3 -4
Drl w'm~ +4Dr6A.w'm~ +2(Drz + 2D~6)A. w,~~~~ +4D~6A. w,~~~~+D~zA. w,~~~~

- A.z(F,~~ w,~~+ F,~~ w,~~- 2F,~~ w,~~+ ~~~ Wo,~~+ F,~~ Wo,~~-2~~~ Wo,~~) = 0 (9)

ArlA.4F,~~~~- 2Ar6A.3F,~~~~+ (2Arz + A~6)A.zF,~~~~ - 2A~6A.~m~+ A~zF,m~

= A.Z(W,~~ - w,~~ W,~~+2Wo,~~ w,~~- Wo,~~ w,~~- Wo,~~ w,~~). (10)
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3. BOUNDARY CONDITIONS

Four kinds of boundary conditions along the edges of the panel are studied:
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(I) ends simply supported-sides simply supported (BC-I)

~ = 0, I : F.~~ =,.,t F.~~ = -A,.,t~ w=o M~=O

,., = 0, I: F,~~ = 22,.,~ F,~~ = -2,.,t~ w=o M~=O;

(2) sides simply supported-ends clamped (BC-2)

~ = 0,1 : F,~~ = ,.,t F,~~ = -2,.,t~ W=O w,~ = 0

,., = 0, I: F - 22 * F,~~ = - 2'7t~ W=O M~=O;
(II)

.~~ - '7~

(3) ends clamped-sides clamped (BC-3)

~ = 0,1: F,~~ = '7t F,~~ = -2,.,t~ W=O w'e = 0

'7 = 0,1: F - 22 * F,e~ = - 2'7t~ W=O w =0'.~~ - ,.,~ .~ ,

(4) sides clamped-ends simply supported (BC-4)

~ = 0,1: F.~~ = ,.,t F.~~ = -2,.,t~ w=o M.e=O

,., = 0, I: F,ee = 22,.,~ F.~~ = - 2'7t~ W=O W.~=O,

where ,.,t, ",~, '7t~ are the nondimensional applied external loads adimensionalized as:

(12)

To satisfy the boundary conditions the assumed functions are chosen in the following
form:

m n

F = ,.,t112/2+,.,~22~2/2-2,.,t~~,.,+ L L FhkXh(~)Yk('7),
h= 1 k= I

i j

W = L L CpqW(~, ,.,),
p= I q~ I

where X and Yare the characteristic clamped-damped beam functions:

(13)

(14)

(15)

(16)

The constants (Xh and 8h are determined with high precision (16 digits) (Zhang and Mathews,
1984) in order to verify the following properties:

Xh(O) = Xh(l) = Xh(O) = Xh(l) = 0,

Yk(O) = Yk(l) = Yk(O) = Yk(l) = o.

(17)

(18)

While the Airy function remains the same, the function w(~, ,.,) is chosen according to the
boundary conditions:

(I) BC-I w(~, '7) = sin (h7t~) sin (kn,.,)
(2) BC-2 w(~, '7) = Xh(~) sin (k7t'7)
(3) BC-3 w(~, '7) = Xh(~)Yk('7)

(4) BC-4 w(~,,.,) = sin (h7t~) Yk (,.,).
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4. SOLUTION METHOD

A set of nonlinear algebraic equations (the governing system) in terms of Fhk and Cpq ,
unknown coefficients of the approximating series for the Airy function IjJ and the out-of­
plane function W, and in terms of calculated Galerkin coefficients, has been obtained by
using the Galerkin procedure in eqns (9) and (10). The resultant nonlinear algebraic
equations in the contracted form are:

L LCmnD~n = L LCpqK1q+ L L L LCpqFrsG1qrs+T(KOij+ L LFrsGO;D, (19)
mn pq pqrs rs

L L FmnA~n = L L L L CpqCrsB1qrs +TL L Cpq B01q·
mn pqrs pq

(20)

The terms A~n, B1qrs> D~n, G1qrs and K1q concern the situation without initial imperfection
T. The terms BO~q, GO~ and KOij concern the presence of initial imperfection T. These all
vary according to various geometric parameters, materials, boundary conditions and Galer­
kin integrals. The applied loads are contained in the terms K1q and KOij. There are two
kinds of Galerkin coefficients: second order coefficients such as J~ X~Xi de in which apex I,
up to four, denotes a derivative of that order with respect to the e coordinate, and third­
order coefficients, such as J~ X;;X:"Xjde, in which apices rand s denote a derivative with
respect to the e coordinate. These coefficients also hold true for functions Yk when replacing
e with 1]. While the second order coefficients have been analytically solved (Romeo et al.,
1990), the third-order coefficients have been numerically determined using the "ABACI
Scientific Desk" software based on the usual integration methods. The POBUCK computer
program has been developed to solve the set of nonlinear equations (19) and (20), using an
iterative procedure in order to find the postbuckling path at a certain load level. After
possible values have been assigned to the unknowns Cpq , the first step consists of extracting
Fhk from eqn (20) and substituting it into eqn (19). The next step is to resolve this final
nonlinear system in function of the Cpq unknowns and thereby work out the Cpq . ABACI
software is then employed to resolve the final nonlinear system, using as a base the modified
Powell hybrid method for finding the zero of a system of nonlinear functions (Powell, 1970;
Abaci, 1987). The user provides a subroutine which calculates the functions and the ABACI
code calculates the jacobian by a forward-difference approximation. The iteration is
developed until convergence with Cpq is reached. The new minimum total potential energy
configuration (also with different numbers of half-waves) is obtained starting with the last
solution of Cpq for subsequent load levels. If convergence has not been reached in this way,
one can assign different initial Cpq values. The POBUCK software operates on IBM PS2,
or higher, requiring about five minutes of CPU, with 36 terms, using the NDP Fortran.

5. ANALYTICAL RESULTS

Several analytical tests have been carried out to prove the accuracy of this procedure
by comparing actual results with the few found in literature. The results have been obtained
by introducing the initial imperfections as:

Wo(~,1]) = Tsin (ne) sin (nl]). (21)

The correlation with the results found in literature is good, as can be seen by observing
Figs 1--4 concerning both the isotropic and anisotropic plate.

In Fig. 1 the Yamaki (1959) results are shown and compared with the present theor­
etical results for a variously constrained isotropic square plate under uniaxial compression,
both with an initial imperfection T = 0.1 and without the imperfection. Also reported is
the nondimensional out-of-plane deflection, as a function of the nondimensionalload. Four
kinds of boundary conditions are to be found: I represents a plate with all edges simply
supported; II represents sides clamped and ends simply supported: III represents sides
simply supported and ends clamped; IV represents a plate clamped along all edges. The
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Fig. 1. Load-deflection curves for various boundary conditions isotropic plate under uniaxial
compression. Comparison between the present theory and the Yamaki results (Yamaki, 1959).
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Fig. 2. Load-deflection curves for isotropic plate with various aspect ratios. Comparison between
the present theory and the Sheinman results (Sheinman et aI., 1991).
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Fig. 6. Experimental and analytical results for a clamped anisotropic plate under biaxial compression
loading (Nc =: 40% NJ. (a) Experimental longitudinal load-strain curves recorded in the centre of
the panel. (b) Membrane longitudinal strain distribution across the mid-width for several applied

loads.
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Px = 167 kN Px = 311.6 kN
(d)

Fig. 6(d) Experimental shadow-Moire patterns at an applied longitudinal load of 200 kN (above);
overall panel deflection theoretical maps at applied loads of 167 and 311.6 kN (below).
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Fig, 7. Experimental and analytical results for a clamped anisotropic plate under biaxial compression
and negative shear loading (Ny = 40% Nx; N,y = - 50% Nx)' (a) Experimental longitudinal load­
strain curves recorded in the centre of the panel. (b) Experimental and analytical load-deflection

curves at the centre of the panel.
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Fig. 7(c) Experimental shadow-Moire patterns at an applied longitudinal load of 150 kN (above);
overall panel deflection theoretical maps at an applied load of 174 kN (centre and below).
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Fig. 8. Experimental and analytical results for a clamped anisotropic plate under biaxial compression
and positive shear loading (N,. = 40% N,; N" = 50% N,). (a) Experimental longitudinal load­
strain curves recorded in the centre of the panel. (b) Experimental and analyticalload--defiection

curves at the centre of the panel.
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Fig. 8(c) Experimental shadow~Moirepatterns at an applied longitudinal load of 150 kN (above);
overall panel deflection theoretical maps at an applied load of 208 kN (below).
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results obtained by the present theory are very close to those of Yamaki. (Note: the results
concerning case II are not shown because they refer to another type of initial imperfection.)
It can be seen from these results that the postbuckling behaviour of isotropic panels with
initial imperfection follows the behaviour of panels without imperfection at least for high
level of load beyond the critical load.

Figure 2 (Sheinman et al., 1991) shows the clamped, simply supported isotropic plate
under uniaxial compression for the plate aspect ratio alb = 1 and alb = 3; results are
reported for the number of terms m = n = i = j = 4 and 6, with initial imperfection T = 0.1.
Two different displacement functions, derived from the solution of beam-vibration or
column-buckling problems, have been introduced in the Sheinman paper to solve the
nonlinear differential equations. For the plate aspect ratio alb = 3, it should be noted that
with the highest number of terms the postbuckling behaviour changes completely from that
with the lowest number of terms. It should also be noted that with the increase of the plate
aspect ratio, the initial imperfections cause a behaviour which is quite different from the
theoretical behaviour without the imperfections.

In Fig. 3 (Minguet et al., 1989) the results are reported for an anisotropic square plate
under uniaxial compression; the plate has the edges clamped and the sides simply supported.
Only the middle out-of-plane displacement (5) is reported in the present paper; the initial
imperfections are not included, since data were not reported in the Minguet paper. A very
good correlation has been obtained, which includes the transition from the first buckling
mode to the second.

Figure 4 (Engelstad et al., 1992) reports a comparison between analytical and exper­
imental results on a rectangular anisotropic plate under uniaxial compression. The plate
has clamped edges and simply supported sides and initial imperfection T = 0.05. Figure 4a
shows the panel deflection obtained with the present theory at a quarter length as a function
of the applied load normalized by the analytical buckling load. Figure 4b shows the panel
deflection obtained with the present theory at an applied load of2.0Pcr. The results obtained
using the present theory converge very well with the experimental ones (Starnes and Rouse,
1981), as well as with the analytical results obtained in the Engelstad paper by a finite
element method and including the transverse shear deformation. From this comparison, it
seems that the postbuckling deflection of thin panels is not affected by the transverse shear
deformation for loads below failure value.

6. EXPERIMENTAL RESULTS

Since experimental results on panels subjected to biaxial compression and shear loads
were not found in literature, a new testing machine has been built by the Italian company
"AlP Studio" in order to apply simultaneously the above combined loads (Fig. 5). A
maximum longitudinal compression load of 490 kN, a transverse compression or tension
load of 196 kN and a positive or negative shear load of 196 kN can be applied to panels
with dimensions smaller than 1000 by 700 mm. Longitudinal load is applied by two
separately controlled servo-actuators; a displacement control is used to keep the panel ends
parallel to each other, their angular rotation controlled to zero with an accuracy of 0.001o.

The transverse load application system, which is made up of two separately controlled
servo-actuators, floats in order not to interfere with the longitudinal and shear loads. Shear
load is applied to the bottom end of the panel by a servo-actuator. The test rig is completely
loop-controlled via electronic modules which are closed by nine transducers (Romeo and
Frulla, 1992).

Experimental and analytical results have been obtained relative to an anisotropic panel
with a symmetric lay up (-45/04/45/90h in which a = 877 mm, b = 577 mm and
h = 5.52 mm; the panel was manufactured in a graphite/epoxy material and was vacuum
bagged and autoclave cured. The material properties used for the computations are:

E I = 209.3 GPa; E 2 = 6.89 GPa; GI2 = 4.26 GPa; V12 = 0.305.
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Fig. 9. Load, per unit width, distribution across the ends (above) and across the sides (below)
for a simply supported anisotropic panel under biaxial compression (Nx., = 100 N mm- I

;

Ny., = 40 N mm- I
).

An initial imperfection, referring to the middle surface, was measured close to the assumed
Wo(~, 11) function when the value of Tis 0.75. The panel boundary conditions assumed all
edges to be clamped, although there were some difficulties in the carrying out of the
experimental clamping. A series of tests were sequentially carried out: a pure biaxial
compression test with load per unit width ratio of (-1, -0.4, 0), with respect to the
longitudinal load, a combined biaxial compression and negative shear test with load ratio
of (-1, -0.4, -0.5) and another combined biaxial compression and positive shear test
with load ratio of (-1, -0.4,0.5).
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Table I. Analytical and experimental results for clamped panel under combined biaxial
compression and shear load

Buckling load per unit width (N mm -I)
Experimental

Applied load Analytical Membrane strain Southwell
ratio Present theory constant method

Nx/N, N,/Nx Nx,.jNx N, N, N xy Nx N, Nxy Nx

-I 0 0 -297 0 0 -285 0 0 -305
-I -0.4 0 -166 -66 0 -153 -61 0 -164
-I -0.4 +0.5 -160 -64 +80 -145 -58 +73 -153
-I -0.4 -0.5 -143 -57 -71 -125 -50 -63 -148
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The out-of-plane displacement was measured using 10 computer-controlled magnetic­
resistive transducers positioned on the centre cross-lines of the panel. A qualitative rep­
resentation of the out-of-plane deflection was obtained, simultaneously to the transducer
acquisition, with the shadow-Moire method.

A summary of the buckling results is reported in Table 1, including the theoretical
buckling load per unit width obtained by the present analysis. The experimental critical
load at which the panel displayed buckling was defined by the load vs strain curves as the
value at which the membrane strain does not increase further. Results are also reported for
the buckling loads obtained from the experimental load-deflection curves using the
Southwell method.

Experimental and analytical results are reported in Fig. 6 for the panel under biaxial
compression; transverse load is 40% of the longitudinal load. The applied load is first
reported (Fig. 6a) as a function of two back-to-back strain gauges placed at mid-length
and mid-width; the measured surface strains were not uniform with the load from the start
because of the presence of an initial imperfection. After buckling, there was no further
increase in the membrane strain at half-width, at half-length and quarter-length from the
bottom and top edges; however, strain gauges placed near the sides still registered an
increase in the membrane value. The strain distribution over the entire cross panel mid­
width is shown in Fig. 6b for five values of the applied load; the y coordinate across the
panel is normalized by the panel width b.

The out-of-plane central deflection is then reported (Fig. 6c) as a function of the
applied longitudinal load; as expected, the presence of an initial imperfection meant that
the transverse displacement increased with the load from the start. The authors' analytical
results, obtained with 16 terms, are in very good correlation with the experimental data up
to 1.5 times the critical load. In the authors' opinion, this is due to the fact that the panel
behaviour passes from one half-wave to two or more half-waves during load increase,
assuming an alternative equilibrium configuration. Different configurations, beyond a
certain load level, were obtained by the authors through the present theory. The overall
panel deflection analytical maps are represented in Fig. 6d; they refer to an applied load
of 167 kN (one half-wave) and 311.6 kN (three half-waves).

After carrying out the tests under combined biaxial compression and shear, a second
experimental test of biaxial compression was carried out up to failure load. The panel failed
catastrophically at a longitudinal load of 285 kN; visually it appeared that the number of
buckling half-waves changed just before failure occurred; however, it was not possible to
record any experimental data in time. As can be seen from the panel failure represented in
Fig. 6e, damage occurred not only near edges and supports but also along a nodal line
placed at about one-third of the panel length. Even though transverse stresses should
significantly contribute to failure initiation, transverse shear deformation has not been
considered to date in the postbuckling path.

Experimental and analytical results obtained for the panel under biaxial compression
and negative or positive load are reported in Figs 7 and 8; the transverse and shear loads
are respectively 40% and 50% of the longitudinal load. The same behaviour was recorded
as for the former tests, but for different loads. The effects of the shear load on the panel
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behaviour are not so high with respect to the biaxial compression; this is mainly due to the
panel lay-up.

7. CONCLUSIONS

Results reported here permit the following conclusions:

(a) The POBUCK computer program is well structured and gives results consistent
with those found in literature and with the experimental results obtained.

(b) Extended testing activity is necessary to investigate other boundary conditions and
to verify the behaviour for much higher loads.

(c) The existence of different equilibrium configurations for certain loads requires
the development of another computer procedure to verify that the previously calculated
equilibrium situations are in fact minimum conditions for total potential energy.

(d) A second reason for the difference between the analytical and experimental out­
of-plane deflection recorded at loads much higher than the critical load is due to the
boundary conditions on the sides of the panel. Both sides and ends, in fact, are constrained
to remain straight by the steel clamps of the machine; for example, in a panel under uniaxial
compression, tensile stresses are developed in the transverse direction on the centre portion,
reducing the out-of-plane deflection (Timoshenko and Gere, 1961). A new theoretical
analysis is in progress to take into account this effect. A simply supported anisotropic plate
under biaxial compression has been considered up to the moment; the components u and
v of the displacements are kept constant along the four sides of the panel. By applying the
principle of the stationary value of the total potential energy a solution has been obtained
and the results are reported in Fig. 9. The plate investigated has the same lay-up of the
panel tested under biaxial compression; transverse load is 40% of the longitudinal load.
The load along the width, N x , and along the length, Ny, is reported at an applied average
longitudinal load of 100 N mm - I; as it is very clear, in the post-buckling field, the
distribution of the compressive load is no longer uniform along the sides; in particular, the
larger portion of the longitudinal load is taken by the portion of the plate near the edges,
while for the transverse load a lower value is applied on the centre portion with respect to
the average applied load. As consequence, a lower out-of-plane deflection will result. The
solution for the clamped plate is under development.

Further efforts might be directed to the examination ofthese problems with the purpose
of improving the correlation between theoretical and experimental data.
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